The Development of Remote Sensing Performance Standards

A joint effort of FEMA, NASA, NOAA and Topographical Engineering Center

Partnerships - Integral to the Process

- The following illustration involves four Agencies of the U.S. Government
 - Army Corps of Engineers Topographical Engineering Center
 - National Air and Space Administration
 - Federal Emergency Management Agency
 - National Oceanic and Atmospheric
 Administration's River Forecast Centers

FEMA Flood Evaluations

• Future Use of Remote Sensing, Models and GIS in floods by FEMA

 \bowtie IFSAR

 \bowtie LIDAR

Mata Fusion

Mark Dynamic Flood Modeling

LIDAR Data Collection can be used to Add Accuracy

- IFSAR is Absolute Accuracy of 1 to 1.5 Meters
- But Differential Accuracy is about 15 Centimeters
- LIDAR Absolute Accuracy is about 15 Centimeters
- Data Fusion should yield Overall Absolute Accuracy of about 15 Centimeters at Lower Cost than Current Technology

Proposed IFSAR and LIDAR Fusion

AUTOMATED MAPPING USING

MAGNITUDE

CORRELATION

ELEVATION

DATA CHANNELS

MAGNITUDE

CORRELATION

VOLUME DÉCOR

RMS MAGNITUDE

ELEVATION GRAD

CORR GRADIENT

SHADED RELIEF

CLASSIFICATION

ELEVATION

BALD EARTH

IFCAR

TERRAIN ANALYSIS
FEATURE EXTRACT
ROAD EXTRACTION
MAP COMPOSITION
EXPORT

West Denver, Colorado

Produced by Vexcel Corporation from IFSARE Data

The California Condition 1997 - 1998 Test Areas

San Joaquin Valley IFSAR DEM

California Aqueduct

San Joaquin Valley IFSAR DEM Stockton, California

San Joaquin Valley IFSAR DEM Stream with Riparian Vegetation

Lidar Study Background

- Lidar topographic mapping has emerged as a significant new technology
- FEMA sponsored commercial collections of Lakewood, CA test site with four providers
- USATEC contracted JHU/APL to analyze the data & provide recommendations
- Will use data to guide data fusion

Joint Agency's Objectives & Approach

Objectives

- Provide data-analysis-derived recommendations for FEMA 37 specifications
- Provide information to drive data fusion investigation

Approach

- Data display
- Accuracy assessment
- Comparative analysis
- Translation of findings into specifications

Least Accurate Data

Void Map of Least Accurate Data

Most Accurate Data

Void Map of Most Accurate Data

Merge Artifacts

Swath 1

Merged Swaths

Swath 2

DEM Differencing Example

Merged Swaths - Swath 1 Merged Swaths - Swath 2

Study Plans

- Complete accuracy assessment
- Complete comparative analysis
- Translate findings into additional working specifications

Conclusions for Draft Lidar Performance Standard

- Color-coded-sun-shaded display reveals artifacts
- Void display reveals additional details
- Quantitative measure development underway
- Expect recommendations to ensure quality of LIDAR performance standards

FEMA's New Working LIDAR Standard

- Has developed a performance standard
- Available for use
- Viewable at

www.fema.gov/mit/tsd/MM_lidar.htm

Dynamic Flood Modeling

- NOAA's River Forecast Centers and the Army Corps of Engineers Hydrologic Engineering Center are Implementing Dynamic Flood Models
- These can Forecast both Inundation and Flash Flood Boundaries
- Will Permit Improved Flood Insurance Rate Maps
- Will Reduce Unneeded and Unheeded Flood Warnings